Vector Search Optimization: Embedding Models, Hybrid Search, and Reranking Strategies

Introduction: Vector search is the foundation of modern RAG systems, but naive implementations often deliver poor results. Optimizing vector search requires understanding embedding models, index types, query strategies, and reranking techniques. The difference between a basic similarity search and a well-tuned retrieval pipeline can be dramatic—both in relevance and latency. This guide covers practical vector […]

Read more →