Deploying LLM Applications on Cloud Run: A Complete Guide

Last year, I deployed our first LLM application to Cloud Run. What should have taken hours took three days. Cold starts killed our latency. Memory limits caused crashes. Timeouts broke long-running requests. After deploying 20+ LLM applications to Cloud Run, I’ve learned what works and what doesn’t. Here’s the complete guide. Figure 1: Cloud Run […]

Read more →

Platform Engineering: Building Internal Developer Platforms That Actually Work

After spending two decades building and scaling engineering organizations, I’ve come to a conclusion that might seem counterintuitive: the biggest productivity killer in most enterprises isn’t technical debt, legacy systems, or even organizational politics. It’s cognitive load. Developers spend an unconscionable amount of time navigating infrastructure complexity instead of solving business problems. Platform engineering, done […]

Read more →

Vector Databases: Why They Matter in the Age of Generative AI

After two decades of architecting enterprise systems and spending the past year deeply immersed in Generative AI implementations, I can state with confidence that vector databases have become the cornerstone of modern AI infrastructure. If you’re building anything involving Large Language Models, semantic search, or Retrieval-Augmented Generation (RAG), understanding vector databases isn’t optional—it’s essential. This […]

Read more →