Advanced RAG Patterns: From Naive Retrieval to Production-Grade Systems

Introduction: Retrieval-Augmented Generation (RAG) has become the go-to architecture for building LLM applications that need access to private or current information. By retrieving relevant documents and including them in the prompt, RAG grounds LLM responses in factual content, reducing hallucinations and enabling knowledge that wasn’t in the training data. But naive RAG implementations often disappoint—the […]

Read more →

Embedding Strategies: Model Selection, Batching, and Long Document Handling

Introduction: Embeddings are the foundation of semantic search, RAG systems, and similarity-based applications. Choosing the right embedding model and strategy significantly impacts retrieval quality, latency, and cost. Different models excel at different tasks—some optimize for semantic similarity, others for retrieval, and some for specific domains. This guide covers practical embedding strategies: model selection based on […]

Read more →

Scaling Up Your Pods: How Horizontal Pod Autoscaling Wins

After two decades of managing containerized workloads across production environments, I’ve come to appreciate that the difference between a good Kubernetes deployment and a great one often comes down to how intelligently it responds to changing demand. Horizontal Pod Autoscaling (HPA) represents one of those fundamental capabilities that separates reactive operations from proactive infrastructure management. […]

Read more →

Structured Output from LLMs: JSON Mode, Function Calling, and Instructor

Introduction: Getting LLMs to return structured data instead of free-form text is essential for building reliable applications. Whether you need JSON for API responses, typed objects for downstream processing, or specific formats for data extraction, structured output techniques ensure consistency and parseability. This guide covers the major approaches: JSON mode, function calling, the Instructor library, […]

Read more →

LLM Testing and Evaluation: Building Confidence in AI Applications

Introduction: LLM applications are notoriously hard to test. Outputs are non-deterministic, “correct” is often subjective, and traditional unit tests don’t apply. Yet shipping untested LLM features is risky—prompt changes can break functionality, model updates can degrade quality, and edge cases can embarrass your product. This guide covers practical testing strategies: building evaluation datasets, implementing automated […]

Read more →

Structured Output from LLMs: JSON Mode, Function Calling, and Pydantic Patterns

Introduction: Getting reliable, structured data from LLMs is one of the most practical challenges in building AI applications. Whether you’re extracting entities from text, generating API parameters, or building data pipelines, you need JSON that actually parses and validates against your schema. This guide covers the evolution of structured output techniques—from prompt engineering hacks to […]

Read more →