Introduction: LLM inference can be slow and expensive, especially at scale. Optimizing inference is crucial for production applications where latency and cost directly impact user experience and business viability. This guide covers practical optimization techniques: semantic caching to avoid redundant API calls, request batching for throughput, streaming for perceived latency, model quantization for self-hosted models, […]
Read more →Search Results for: name
Embedding Models Compared: OpenAI vs Cohere vs Voyage vs Open Source
Introduction: Embedding models convert text into dense vectors that capture semantic meaning. Choosing the right embedding model significantly impacts search quality, retrieval accuracy, and application performance. This guide compares leading embedding models—OpenAI’s text-embedding-3, Cohere’s embed-v3, Voyage AI, and open-source alternatives like BGE and E5. We cover benchmarks, pricing, dimension trade-offs, and practical guidance on selecting […]
Read more →RAG Optimization: Query Rewriting, Hybrid Search, and Re-ranking
Introduction: Retrieval-Augmented Generation (RAG) grounds LLM responses in factual data, but naive implementations often retrieve irrelevant content or miss important information. Optimizing RAG requires attention to every stage: query understanding, retrieval strategies, re-ranking, and context integration. This guide covers practical optimization techniques: query rewriting and expansion, hybrid search combining dense and sparse retrieval, re-ranking with […]
Read more →LLM Routing and Model Selection: Optimizing Cost and Quality in Production
Introduction: Not every query needs GPT-4. Routing simple questions to cheaper, faster models while reserving expensive models for complex tasks can cut costs by 70% or more without sacrificing quality. Smart LLM routing is the difference between a $10,000/month AI bill and a $3,000 one. This guide covers implementing intelligent model selection: classifying query complexity, […]
Read more →Multi-Model Orchestration: Routing, Parallel Execution, and Specialized Pipelines
Introduction: Production LLM applications often benefit from using multiple models—routing simple queries to cheaper models, using specialized models for specific tasks, and falling back to alternatives when primary models fail. Multi-model orchestration enables cost optimization, improved reliability, and access to each model’s unique strengths. This guide covers practical orchestration patterns: model routing based on query […]
Read more →Semantic Caching for LLM Applications: Cut Costs and Latency by 50%
Introduction: LLM API calls are expensive and slow. A single GPT-4 request can cost cents and take seconds—multiply that by thousands of users asking similar questions, and costs spiral quickly. Semantic caching solves this by recognizing that “What’s the weather in NYC?” and “Tell me NYC weather” are essentially the same query. Instead of exact […]
Read more →