LLM Guardrails and Safety: Protecting Your AI Application from Attacks

Introduction: Deploying LLMs in production without guardrails is like driving without seatbelts—it might work fine until it doesn’t. Users will try to jailbreak your system, inject malicious prompts, extract training data, and push your model into generating harmful content. Guardrails are the safety layer between raw LLM capabilities and your users. This guide covers implementing […]

Read more →

Prompt Templates and Versioning: Building Maintainable LLM Applications

Introduction: Production LLM applications need structured prompt management—not ad-hoc string concatenation scattered across code. Prompt templates provide reusable, parameterized prompts with consistent formatting. Versioning enables A/B testing, rollbacks, and tracking which prompts produced which results. This guide covers practical prompt template patterns: template engines and variable substitution, prompt registries, version control strategies, A/B testing frameworks, […]

Read more →

AWS re:Invent 2023: Amazon Bedrock and Q Transform Enterprise AI with Foundation Models and Intelligent Assistants

Introduction: AWS re:Invent 2023 delivered transformative announcements for enterprise AI adoption, with Amazon Bedrock reaching general availability and Amazon Q emerging as AWS’s answer to AI-powered enterprise assistance. These services represent AWS’s strategic vision for making generative AI accessible, secure, and enterprise-ready. After integrating Bedrock into production workloads, I’ve found its model-agnostic approach and native […]

Read more →

Building Production RAG Applications with LangChain: From Document Ingestion to Conversational AI

Introduction: LangChain has emerged as the dominant framework for building production Retrieval-Augmented Generation (RAG) applications, providing abstractions for document loading, text splitting, embedding, vector storage, and retrieval chains. By late 2023, LangChain reached production maturity with improved stability, better documentation, and enterprise-ready features. After deploying LangChain-based RAG systems across multiple organizations, I’ve found that its […]

Read more →

GPT-4 Turbo and the OpenAI Assistants API: Building Production Conversational AI Systems

Introduction: OpenAI’s DevDay 2023 marked a pivotal moment in AI development with the announcement of GPT-4 Turbo and the Assistants API. These releases fundamentally changed how developers build AI-powered applications, offering 128K context windows, native JSON mode, improved function calling, and persistent conversation threads. After integrating these capabilities into production systems, I’ve found that the […]

Read more →

OpenAI Assistants API: Building Stateful AI Agents with Code Interpreter and File Search

Introduction: OpenAI’s Assistants API, launched at DevDay 2023, represents a significant evolution in how developers build AI-powered applications. Unlike the stateless Chat Completions API, Assistants provides a managed, stateful runtime for building sophisticated AI agents with built-in tools like Code Interpreter and File Search. The API handles conversation threading, file management, and tool execution, allowing […]

Read more →