Introduction: LLM latency is the silent killer of user experience. Even the most accurate model becomes frustrating when users wait seconds for each response. The challenge is that LLM inference is inherently slow—autoregressive generation means each token depends on all previous tokens. This guide covers practical techniques for reducing perceived and actual latency: streaming responses… Continue reading
Category: Technology Engineering
Technology Engineering
Agentic Workflow Patterns: Building Autonomous AI Systems That Plan, Act, and Learn
Introduction: Agentic workflows represent a paradigm shift from simple prompt-response patterns to autonomous, goal-directed AI systems. Unlike traditional LLM applications where the model responds once and stops, agentic systems can plan multi-step solutions, execute actions, observe results, and iterate until the goal is achieved. This guide covers the core patterns that make agentic systems work:… Continue reading
Prompt Engineering Best Practices: From Basic Techniques to Advanced Reasoning Patterns
Introduction: Prompt engineering is the art and science of communicating effectively with large language models. Unlike traditional programming where you write explicit instructions, prompt engineering requires understanding how models interpret language, what context they need, and how to structure requests for optimal results. This guide covers the fundamental techniques that separate amateur prompts from production-quality… Continue reading
LLM Memory Systems: Building Contextually Aware AI Applications
Introduction: Memory is what transforms a stateless LLM into a contextually aware assistant. Without memory, every interaction starts from scratch—the model has no knowledge of previous conversations, user preferences, or accumulated context. This guide covers the memory architectures that enable persistent, intelligent AI systems: conversation buffers for recent context, summary memory for long conversations, vector-based… Continue reading
Tool Use and Function Calling: Extending LLM Capabilities with External Actions
Introduction: Function calling transforms LLMs from text generators into action-taking agents. Instead of just producing text responses, models can now decide when to call external functions, APIs, or tools to accomplish tasks. This capability enables building assistants that can search the web, query databases, send emails, execute code, and interact with any system that exposes… Continue reading
LLM Output Parsing: Transforming Unstructured Text into Reliable Data Structures
Introduction: LLM outputs are inherently unstructured—models generate text, not data structures. Yet most applications need structured data: JSON for APIs, typed objects for business logic, specific formats for downstream processing. Output parsing bridges this gap, transforming free-form text into reliable, validated data structures. This guide covers the techniques that make parsing robust: format specification in… Continue reading
Advanced RAG Patterns: From Query Rewriting to Self-Reflective Retrieval
Introduction: Basic RAG retrieves documents and stuffs them into context. Advanced RAG transforms retrieval into a sophisticated pipeline that dramatically improves answer quality. This guide covers the techniques that separate production RAG systems from prototypes: query rewriting to improve retrieval, hybrid search combining dense and sparse methods, cross-encoder reranking for precision, contextual compression to fit… Continue reading
LLM Deployment Strategies: From Model Optimization to Production Scaling
Introduction: Deploying LLMs to production is fundamentally different from deploying traditional ML models. The models are massive, inference is computationally expensive, and latency requirements are stringent. This guide covers the strategies that make LLM deployment practical: model optimization techniques like quantization and pruning, inference serving with batching and caching, containerization with GPU support, auto-scaling based… Continue reading
Multimodal AI Applications: Building Systems That See, Hear, and Understand
Introduction: Multimodal AI processes and generates content across multiple modalities—text, images, audio, and video. This capability enables applications that were previously impossible: describing images, generating images from text, transcribing and understanding audio, and creating unified experiences that combine all these modalities. This guide covers the practical aspects of building multimodal applications: vision-language models for image… Continue reading
LLM Fine-Tuning Techniques: From LoRA to Full Parameter Training
Introduction: Fine-tuning transforms general-purpose LLMs into specialized models that excel at your specific tasks. While prompting can get you far, fine-tuning unlocks capabilities that prompting alone cannot achieve: consistent output formats, domain-specific knowledge, reduced latency from shorter prompts, and behavior that would require extensive few-shot examples. This guide covers the practical aspects of LLM fine-tuning:… Continue reading