Introduction: Prompt engineering is the art and science of communicating effectively with large language models. Unlike traditional programming where you write explicit instructions, prompt engineering requires understanding how models interpret language, what context they need, and how to structure requests for optimal results. This guide covers the fundamental techniques that separate amateur prompts from production-quality […]
Read more →Category: Technology Engineering
Technology Engineering
LLM Memory Systems: Building Contextually Aware AI Applications
Introduction: Memory is what transforms a stateless LLM into a contextually aware assistant. Without memory, every interaction starts from scratch—the model has no knowledge of previous conversations, user preferences, or accumulated context. This guide covers the memory architectures that enable persistent, intelligent AI systems: conversation buffers for recent context, summary memory for long conversations, vector-based […]
Read more →Tool Use and Function Calling: Extending LLM Capabilities with External Actions
Introduction: Function calling transforms LLMs from text generators into action-taking agents. Instead of just producing text responses, models can now decide when to call external functions, APIs, or tools to accomplish tasks. This capability enables building assistants that can search the web, query databases, send emails, execute code, and interact with any system that exposes […]
Read more →LLM Output Parsing: Transforming Unstructured Text into Reliable Data Structures
Introduction: LLM outputs are inherently unstructured—models generate text, not data structures. Yet most applications need structured data: JSON for APIs, typed objects for business logic, specific formats for downstream processing. Output parsing bridges this gap, transforming free-form text into reliable, validated data structures. This guide covers the techniques that make parsing robust: format specification in […]
Read more →Advanced RAG Patterns: From Query Rewriting to Self-Reflective Retrieval
Introduction: Basic RAG retrieves documents and stuffs them into context. Advanced RAG transforms retrieval into a sophisticated pipeline that dramatically improves answer quality. This guide covers the techniques that separate production RAG systems from prototypes: query rewriting to improve retrieval, hybrid search combining dense and sparse methods, cross-encoder reranking for precision, contextual compression to fit […]
Read more →LLM Deployment Strategies: From Model Optimization to Production Scaling
Introduction: Deploying LLMs to production is fundamentally different from deploying traditional ML models. The models are massive, inference is computationally expensive, and latency requirements are stringent. This guide covers the strategies that make LLM deployment practical: model optimization techniques like quantization and pruning, inference serving with batching and caching, containerization with GPU support, auto-scaling based […]
Read more →